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Abstract

The theory of the resonance radiation force is studied

as it applies to the slowing of a two-level atom using a

swept frequency laser. Ihe theory is developed in detail

for this case. A single partial differential equation called

the Fokker-Planck equation is found to describe the atomic

motion for many cases. This equation is solved numerically

for a one dimensional geometry. Results from this numerical

solution are found to be within 10% of experimental results.

Analysis of this problem in one dimension leads to the . -

prediction that for fixed amounts of frequency sweeping, a

faster scan rate will yield smaller full width at half max-

imum (FJ:-ti,) spread in the velocity distribution for the atomic

beam. This program also predicts that the atoms can be slowed

arbitrarily close to 0 m/sec using this technique. :.he

program used for this analysis is included.

.. ,." .;....



LASER COOLING OF NEUTRAL ATOMS

I. Introduction

Background

The theory of interaction of light with neutral atoms

was first developed by Einstein (Ref 1) in 1917. In this paper

Einstein introduced the concept of coefficients that describe 1.

absorbtion, spontaneous and stimulated emmission. He described

how these coefficients allow derivation of the Planck radiation

law and developed the theory of motion of atoms when interact-

ing with light. The momentum transferred to the atoms, and the

fluctuations in this transferred momentum, were calculated

! ( using quantized energy theory and the idea of the canonical

distribution of states in thermal radiation. The first exper-

imental work showing transfer of momentum to an atomic beam

was performed by Frisch (Ref 2). Using conventional light

sources, Frisch deflected an atomic beam. The advent of the

laser, with high intensities and monochromatic nature, greatly
enhanced the experimental worlds ability to slow atoms using

light.

In 1975 Hansch and Schawlow (Ref 3) first proposed that

a standing wave laser could slow atoms using the spontaneous

force. Very slow cI 0 m/Sec. atomic beams are useful for

atomic clocks (Ref 4 and 5), doppler free spectroscopy (Ref 6),

and insertion into single atom light traps (Ref 7).

• °'..-. ''" • -,-.,' .. ." ; ."."-" ' " : "' '." , ,. -°-."." . , "j -" "• "."- •" •". t . t-- -t-"-- -_ ",:'_,q " ' /_;1< -



In 1979 Balykin, Letokhov, and Minogin reported exper-

*.'. imentally slowing atoms using a traveling wave constant fre-

quency laser to slow atoms. The reduction in velocity was

small, but the distribution functions full width at half max.-.

imum (FWHM) was substantially reduced (Ref 8). In 1982 Phillips

and Metcalf reported the first observation of slowing using a

fixed frequency laser. The difference between the two methods

is how the laser stays in resonance with the atomic beam. In

the first case the frequency is changed to stay in resonance,

and in the second a magnetic field is used to change the energy

levels so as to stay in resonance with the laser. In two sep-

arate papers (Ref 9 and 10) Phillips and Metcalf, along with

Prodan, reported results of the two different methods of cool-

ing. Unfortunately in both cases the laser apparently quit

interacting with the atomic beam. In both cases the most prob-

able velocity was 1100 in/sec. In one case the atoms could only

be slowed to -4 0 .In the second case the atoms were

only slowed to -, 6 0~'q. 0 consultation between the scien-

tists at National Bureau of Standards and Dr. Richard Cook of

the Air Force Institute of Technology resulted in a theoretical

investigation of this problem using a one dimensional Fokker-

Planck equation. This thesis is the result of that investigation.

Problem Statement

Given a longitudinal velocity distribution for an atomic

beam, and the theory of resonance radiation interacting with

that beam, predict the time history of the velocity distribution



using a numerical solution to the Fokker-Planck equation. A

-S -'careful investigation of the one dimensional model- developed

by Cook (Ref 11) is to be accomplished. The model will be

checked against known experimental results. If the model shows

the loss of interaction as found experimentally, then a study

of ways to avoid the interaction loss will be undertaken. If

the model does not contain the information, other more complex

models will be briefly reviewed to find avenues of further

research.

Current Knowledae

The background section gives a historical development of

the important papers in this field. Hence, this section will

be constrained to dealing with the body of knowledge needed

for the thesis. This consists of three basic areas. First,

the initial velocity distribution for the atoms are needed.

This information is developed in Ramsey's book (Ref 12).

Second, a general theory of the interaction of light with an

atom is required. A general theory of resonance radiation

pressure of light is developed from quantum electrodynamics -

by Cook (Ref 13). Finally, the transformation of the partial

differential equation developed from the theory to a differ-

ence equation is taken from Gerald (Ref 14~).

Aipproach

This thesis is broken into four main sections. The first

section is the introduction. The following three sections are

the main body of the thesis. A 'A~bliography and an appendix
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follow the main portion of the work. The following is a brief

description of the main sections in the thesis.

Section II develops a set of coupled differential equat-

ions that describe the interaction of the laser with the atomic

beam. These equations are developed using Ehrenfests theorem

to find the time rate of change of the expectation value of

the momentum of the atom. It is shown that these coupled diff-

erential equations reduce to a single Fokker-Planck equation

in certain circumstances. The Fokker-Planck equation dbscribes L

the velocity distribution function of the atomic beam as it

evolves in time. The Fokker-Planck equation is the major start-

ing point for this thesis.

Section III describes the numerical solution of the

Fokker-Planck equation. A difference equation is developed to

solve the problem numerically. Stability and convergence cri-L

teria of this difference equation are studied. A complete anal-

ysis of a particular cooling method is also studied. The re-

sults derived from the numerical analysis are compared to ex-L

perimentally derived results for this particular case.

Section IV draws conclusions and makes recommendations

for further work based upon this thesis.. A review of the majorL

theory and results are presented in brief form. An estimate of

the validity of these results is given. Recommendations are

made for further experimental and theoretical work in this area.

Assumptions and Scope

Several assumptions are implicit throughout this thesis.



The assumptions are detailed below, along with their justi-

fications, so the reader can gain a clear understanding of

the limits of this work. In all cases a minimum number of

assumptions are made. Hopefully this will keep the theoretical

results broad enough so they can be applied to other specific

cases. The theory developed here and elsewhere in the literature

assumes that the atom under consideration has only two energy

levels. At the present time there are no general solutions to

the problem for multi-level atoms. Experimentally, a magnetic

field can be applied to the atomic beam to allow only two energy

levels to be occupied by the electrons (Ref 15). Thus, the

theoretical results can be compared to experimental results

without correcting for this assumption.

Only a one dimensional model of the interaction is con-

sidered. There are indications that this assumption will cause

some results to be ignored in the model that are present in

experimental work (Ref 9 pg 1151). This assumption is made

since this is the first time that numerical solutions of the

Fokker-Planck equation for this situation have been attempted.

An inclusion of two and three dimensional effects can be added

at a later time to the difference equation. The major result

of this assumption is, the finite extent and Gaussian nature

of the laser beam is ignored. Since the number density in the

atomic beam is very low, approximately 10" crv , particle-

particle interactions in the beam can safely be ignored for a

first order answer.

. .. ... . . ..... . . . . . . . . . . . . .



L
To allow the Fokker-Planck equation to be used as

the master equation governing the atomic motion, it is

assumed that the external field changes amplitude slowly

r in time compared to 1-1 Here A is the Einstein spon- -taneous emission coefficient. Since the case considered is

a traveling wave monochromatic field interactint, with the

atomic beam, the above assumption is justified. If the

external field is a standing wave, and the atomo are moving

with respect to the nodal points, the above asuumption would

be unwarrented.

The scope of this thesis is intentionally limited due

to time constraints. First the theory of resonance radiation

- is reviewed in the literature and applied to a upecific

cooling case. Second this specific case is anal.yzed in

detail. Third the theoretical results are compared to exper-

imental results, and are reviewed for possible future options

for continuing work in this important area.

6 N.-_
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II. TheorX of the Resonance Radiation Force

Introduction

This section contains physical explanation of the

5. interaction of a laser beam in resonance or near resonate con-

ditions with an atomic beam. A qualitative explanation will ZI

* be given first to provide a general idea of the physics in-

volved in cooling a beam. A quantitative explanation of the

physics will follow. The specific explanation is a compilation

of several articles by Dr. R.J. Cook (Ref 11 and 13).

General Explanation

When light interacts with an atom it excites the elec-

trons in the outer shell of the atom to a higher state of

energy. In 1917 Einstein (Ref 1) gave the first explanation

of this process. Photons have definite momentum and energy

described by the famous relations,

Pv~t~ q~~E:~ t%

where has magnitude c and points in the direction of prop-

agation of the light wave. A photon striking an atom excites

the electrons when the energy carried by the photon equals

the energy gap between the electronic transitions. When this

happens the photon imparts momentum to the atom. After a time

where A is the Einstein spontaneous emission coeffi-

cient, the atom will decay back to the ground state. At this

point it can be excited by another photon and receive another

"kick" in momentum. If the photons are collimated as in a

7



laser, the imparted momentum will all be in the same direction.

Einstein showed that spontaneous emission has equal probabil-

ity of emitting in the positive or negative direction for a

one dimensional case (Ref 1 pg 67). The emission pattern of

the atom while not isotopic, is symmetric. Thus, the spontan-

eous emission of the atom imparts no net momentum change to

the atom. A large number of photon-atom collisions will then

cause the beam to be slowed down if the atoms are propagating

in the opposite direction of the laser.

Specific Explanation

Consider an atom with two allowable energy states, E

and E . This atom is exposed to a traveling wave tuned to

the transition from E, to E, . This traveling wave has an

associated energy density W. Let P, and Pa be the probability U
that energy states E, or E., is occupied. Einstein proposed

that in this case the rate of stimulated emission is

R, =BWP,. The rate of spontaneous emission is

R =AWP,. Here B and A are the Einstein B and A

coefficients for stimulated and spontaneous emission respec-

tively. For an atom in steady state condition, i.e. the field L
has been interacting with the atom on "a time scale long com-

pared to t: A the rate of exciting processes equal the

rate of deexciting process. L

Hence,

.'. P B i - -ww
;8o
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The atom receives .tNk from the absorption and -i% from

.. the stimulated emission. So the time rate of change of the

momentum is given by equation 1.

This derivation of the force is accurate only for cases

where the momenta transferred has definite value is.

If the field has a variety of component wavelengths, has I,.s

pointing in different directions or is not a traveling wave,

a more gneral explanation is required to predict the observed

experimental results.

Two papers by Cook (Ref 11 and 13) provide a more general

theory of the equations of motion of the atomic beam. The first

paper treats the motion of the center of mass of the particle

using Ehrenfests theorem and the optical Bloch equations. It :

neglects fluctuations in the force of the photons on the atoms

due to the spontaneous and stimulated emission of the atoms.

The second paper develops a general theory for a two level

atom in a resonate or near resonate field of arbitrary ampli-

tude and phase. The following will be development of the ap-

proach used for Ehrenfests theorem and the optical Bloch equa-

tions.

Following Schiff (Ref 15) consider an atom represented

by a wave function'4 . To find the "equation of motion" of

this wave packet take the time derivative of the expectation

value of the position variable.

r

," " -. --
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Substitute for the time derivatives using Schrodingers wave

equation and perform some algebra to obtain,

Integrate over the second term by parts twice remembering that -

the wave function vanishes at infinity.

Perform the differentiation within the brackets to obtain,

Using the relation,
.l .,

In a very similar way one can obtain,

I' = ~ V = ( 3) ..

where V is the potential energy of the system. This is a good

representation in the macroscopic limit where the finite size

and internal structure of the particle can be ignored. This -

means the size of the wave packet is small compared to

10



. distance over which changes significantly. Equation I and

S2 provide an analogy to the classical equations of motion.

They also agree with the Heisenberg representation which

states,

This is because -,a.E is the potential energy for an atom in

a field. Here 1 is the Hamiltonian of the system. For an atom

in the dipole approximation of an ext.ernal field,

fi ~: 4. o _ t .-..o

Here JZ is the electric dipole moment operator and E is the

electric field evaluated at a point . R is the Hamiltonian

for the internal motion of the atom.

Ehrenfests theorem is equation 4 . It is obtained by com-

bining the expectation values of the Heisenberg equations and

setting,

<o --i dt2- . .. ,

Equation 4 is general as long as the dipole approximation

is accepted. To ease calculations, assume that the external

field has the form,

"" 11 ",



pN

where is a polarization vector independent of 7 and

This form of Eis substituted into equation 4 to obtain

equation 5.

VP..

pThis uses the assumption that the wave packet is small compared
to the changes in the f ield. This allows the V%, UFdA) to

* be pulled out of the expectation value. Therefore in the

Ot dipole approximation the motion of the atom is due to the

* electric field vector. To find the force acting upon the atom,

and hence its quantum mechanical *equation of motion", consider

a two level atom with energy states E and E *An arbitrary

- monochromatic field is applied to the system. The form of this

field is equation 6.

12
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The Optical Bloch Equations

Several authors (Ref 11 and 16) show that using equation

6 as the applied field in equation 5, yields a coupled set of

differential equations. These equations expl.in the motion of

an atom in an external field. Equations 8 thru 10 are the

optical Bloch equations. These equations govern the internal

workings of these atoms.

' ,, 6 )'- U 8)A

(90)'vTh -1Sv - (10 3 ) .:.-

Here is the phase of the external field,

E(P) is the amplitude of that field,

A _ *1 is the on resonance Rabi flopping frequency,

A= is the detuning frequency,

Fj is the Einstein spontaneous emission coefficient.

The Rabi frequency is a measure of the field strength at the

point under consideration. It also represents the frequency at

which the atom will absorb and undergo stimulated emission in

a strong field. Equations 7 thru 10 show that the force is not

an explicit function of position, velocity, or external field,

13
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but rather is governed by the coupled set of equations

shown. The terms involving the Einstein coefficient are

called relaxation terms. They are obtained thru quantum elec-

trodynamics and are not derived in this thesis. Louisell (Ref 17)

presents a first principles argument for these relaxation

terms.

If the spontaneous terms were not present, the atom

would oscillate between the upper and lower state at the Rabi

frequency. The spontaneous emission process, which gives rise

to the relaxation terms, causes a steady state population dis-

tribution. The physical significance of the variables U,V,W

are summarized from Allen and Eberly's book (Ref 11). W is

the single atom population inversion, V is the absorptive com-

*ponent of the dipole moment, and U is the dispersive component

of the dipole moment.

The Fokker-Planck Equation

Cook (Ref 13 pg 1087) develops a set of equations similar

in nature to equations 7 thru 10. The equations developed by

Cook are more general in nature and are derived from quantum

electrodynamics. The optical Bloch equations are developed

from the Ehrenfests theorem and only predict the equation of

motion of the centroid of the atomic wave packet. The optical

Bloch equations are consistent with the more general set of

equations. It is this fact that allows use of the optical Bloch

equations in the development of the theory. The optical Bloch

:- equations represent a less general but still useful starting

14
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point for most practical applications.

An easier way of treating the motion of an atomic beam

interacting with a laser is to use the Folcker-Planck equation.

Using the general set of equations developed by Cook, it can

be shown that the Fokker-Planck equation is accurate to second

order in (Ref 13 pg 1096). An explicit derivation of the

Fokker-Planck equation is given in the Appendix of Cooks paper

(Ref 13 pg 1096). The form of the Fokker-Planck equation is

given in equation 11.

where 5is the velocity distribution function for the atomic beam,

F is the interaction force of the laser with the beam,

U m is the mass of the atom and

Dis a diffusion coefficient.

Since the derivation of the Fokker-Planck equation is

given explicitly by Cook, it will not be repeated here. The

restrictions imposed by using the equation, and the development

of explicit expressions included in the equation are presented

below.

The major constraint imposed by the use of the Fokker-

Planck equation is the smooth field approximation discussed

by Cook (Ref 13 pg 1096). The smooth field approximation re-

quires that the amplitude and phase of the external field

remain nearly constant during a time equal to the relaxation

time of the atom.This relaxation time is on the order ofX

15



where A is the Einstein coefficient. If the amplitude and

phase of the external field are not constant in space, then

the velocity of the atom must be such that it will not move

into a region of significantly different amplitude or phase

in a time t-'L • For instance, in a standing wave of wave-

length ) the atom should not move a distance greater than

,,during the time Xt

The interaction force in equation 11 is derived from

equations 7 thru 10. In the case of the smooth field approx-

imation since the phase and amplitude vary slowly in time,

the values of U,V,W assume steady state values obtained by

setting U,V,W 0 in equations 8 thru 10. After elimination

of W one obtains equations 12 thru 14".

F % Uvs AL e) (12)

(Z 1L

Solving these three equations for F results in,

For a plane running wave of the form,

16



This is the force associated with the absorption of momenta

from photons discussed in the General Explanation section.

This force is commonly called the spontaneous emission force

since it is the symmetric emission pattern of spontaneous

emission, that allows the momenta transferred from absorption

to effect the atom.

For a standing wave of the form,

so that,

This force is commonly called the dipole interaction

force. This force arises from the dipole moment induced by

the external field in the atom interacting with the gradient

of the amplitude of the external field. In general, all one

needs is the form of the external field. This combined with

equation 15 gives the force of interaction between the light

17 5



and the atomic beam.

gal, The diffusion coefficient in equation 11 arises because

of fluctuations in the interaction force. The diffusion coef-

ficient has two components, one due to the spontaneous emission

process, and one due to the induced processes of absorption

and stimulated emission. The derivation of the form of the

diffusion coefficients is given by Cook (Ref 13 Pg 1097). The

results of this derivation are equations 20 and 21.

~r ~;

L, i , A " ..; (p,,o,¢ (20)

where

A , . L .ti

As shown, both the diffusion coefficients are tensors. The
matrix a is a diagonal matrix when the dipole moment is

directed perpendicular to the direction of propagation of the

external field. For this case and a one dimensional analysis

.i % (Ref 13 pg 1087). If the form of the external field

* is d(4t . . then equations 20 and 21 become equa-

tions 22 and 23.
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The physical explanation for the spontaneous diffusion

coefficient is fairly straightforward. The atom spontaneously

emits a photon after being excited in a time period.

This emitted photon imparts momentum to the atom. Since the

direction the photon is emitted in is random, many such emis-

sions will give rise to a walk phenomenon. Thus, a random walk

in momentum space occurs. Following Rief (Ref 18 pg 488). one

can calculate a diffusion coefficient which is within an order

Ctof magnitude of that obtained from equation 22. The step sizr

is ,and the rate is J~.Hence,

Ds1  A"V

This is within a factor of 5of that derived from equation 20.

* .Equation 20 evaluated in a strong field case yields,

Since the emitted radiation pattern is dipole in nature

(Ref 13 pg 1089), the diffusion coefficient due to spontaneous

emission has a definite tensorial nature. That is, it has

different values for different directions in space.2

The induced diffusion coefficient can not be so

19
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conveniently explained. Absorption and stimulated emission

processes are not statistically independent. To absorb a photon

the atom must be in a ground state. To emit a photon the atom

must be in an excited state. So the probability of whether a

photon emitts or absorbs is dependent on what. has happened in

the history of the atom. Thus, the statistics of photon absorp-

tion and emission are not Poisonian (Ref 13 Pg 1090).

The idea that the induced diffusion coefficient can be

derived from a random walk argument is incorrect in the general

case. A step size of 1 and a rate rA leads to an answer that

disagrees with that found from equation 21 by a factor of "

This factor can in principle be as large as desired since it

is linear with the field strength. In general the induced

diffusion coefficient has not yet been physically explained.

It has been pointed out that a physical explanation can

be provided for certain very restricted cases (Ref 13 pg 1089).

For the case of a standing wave external field that is exactly

on resonance -C , a physical explanation of the induced -

diffusion coefficient is developed from the optical Stern-

Gerlach effect.

When the external field is a standing wave and the laser

is on resonance with the atomic beam, then there exists two

separate distributions for the atomic beam. These two distri-

butions are a superposition of pure quantum states for the atoms.

These two distributions experience a force F. and F .The

states are labled S,, and S_ for the forces they experience. r

The nature of the force is most easily explained by traditional

20



electromagnetic theory. When an electric dipole is in an ex-

ternal field it experiences a force F=- 'p.[ . This is

the magnitude of the force the atom experiences. The two

distributions experience forces in the opposite direction.

From the ..low of stimulated emission and absorption, the force

arises from many coherent emissions. The probability that the

atom is in either distribution is j (Ref 13 pg 1084). The

force continues to interact with the beam for a time -aA

Since the probability the atom is in its upper state is for

the strong field case, the rate at which the atom emitts is

A/4. This is because the rate an atom emitts is R = AP, where

P is the probability the atom can emit ( . =*).

Thus, when spontaneous emission returns the atom to its

original level, the entire process can start over. The atom

can once again feel a force -F. Onc. can see that the beam will

be split in half each time . . This represents a diffusion

oein momentum space that can be represented as a random walk

process. t

For a step size in momentum space = and a rate of

- one obtains equation 24.

L
. .- (24)

Thus, the diffusion coefficient as calculated from the random

walk approach is

4% VV1 X (25)

21

........................................... [
.........................................

"''" • Z -" ." -' -" -" ." 2" ." * °" ." , " • . - - - - -, . . - " . - - -
"

- - - • " % ". ' - , • ° , , - "- " "



Equation 21. gives the induced diffusion coefficient in

* . general. For a general standing wave of the form equation 26,

the induced coefficient is equation 27. For the case of exact

resonance &=Q one then obtains a coefficient that is de-

rived from the same conditions as before. This coefficient is

equation 28.

'~ ~o&-AN~"' ~(26)

(27)

~ _____ (28)

This coefficient agrees exactly with that of equation 25

which was developed from the random walk process due to the

optical Stern-Gerlach effect. It should be remembered that

for off resonance cases, physical explanations do not yet

yield a correct induced diffusion coefficient. Equation 21

is the general form of the induced diffusion coefficient.

In conclusion, the spontaneous diffusion coefficient

(equation 20), can be explained as a random walk process in

momentum space size 4%4 and rate A. The induced diffusion

coefficient (equation 21), does not have a physical explan-

ation that holds for all cases. For on resonance the Stern-

Gerlach effect can be used to develop a diffusion coefficient

from the random walk point of view. The total diffusion

22
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coefficient appearing in the Fokker-Planck equation (equation 11),

is the sum of the spontaneous and induced coefficients.

1ta b-, = (29)

Discussion

As noted above, the Fokker-Planck equation is a special-

ized case for a general set of coupled partial differential

equations. These equations are presented below in equations

30 thru 33 for completeness.

4 V .S -(3) A
(32)

wher +14 U." f j

andvv L- A y(-IC~ )ILV (31)~~

*in the dipole approximation. :-

Here ' is the angle between X and j h= - o .-*-

t is the mass of the particle and

. is the dipole moment.

Equations 30 thru 33 represent the generalized quasiclassical t.:' A

i323)
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limit for the equation of motion for an atom in resonate con-

ditions.

It is obvious that the Fokker-Planck equation presented

in the preceeding section is easier to solve than equation 30

thru 33. The decision of which equation is to be used is based

upon the exact problem under investigation. For example, a

plane monochromatic running wave obviously fullfills the re-

quirements for the smooth field approximation. Thus, the Fokker-

Planck equation could be used to investigate this problem as

long as the time scale under consideration was long compared

to 1/A. On the other hand, a problem with a standing wave

external field in which the atom moves a significant distance

compared to the distance over which the field changes amplitude,

would require that equations' 30 thru 33 be solved. So the

optical Stern-Gerlach effect can not be predicted using the

Fokker-Planck equation.

In conclusion, there exists a set of generalized equa-

tions of motion for a two level atom in an external field

(Ref 13 pg 1082). These integral equations include all effects

of field quantization. The quasiclassical limit (Ref 13 pg 1083)

of these equations are presented here as equation 30 thru 33.

The use of Ehrenfests theorem and a form for the applied field,

yield the optical-Bloch equations (equations 8 thru 10). The

optical Bloch equations are consistant with the generalized

set of equations but only predict the equation of motion of

the centroid of the atomic wave packet (Ref 11 pg 227). That

is, they will not predict such results as the optical Stern-

24
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Gerlach effect which is quantum mechanical in nature. For

the smooth field approximation (Ref 13 pg 1096), equations 30

thru 33 reduce to the Fokker-Planck equation (equation 11)

with force and diffusion coefficients given by equations 15

and 29 respectively. The Fokker-Planck equation is accurate

to second order in % . For the case of a plane monochromatic

traveling wave interacting with an atomic beam, the Fokker-

Planck equation is sufficient to solve the equation of motion

of the atomic beam distribution function. The analysis section

takes this example and presents the numerical solution of the

Fokker-Planck equation for this case.

25
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III. Application of the Theory to Cooling an Atomic Beam

Introduction

This section deals with the application of the theory

developed in section II, to the problem of using a laser in

resonance with the atomic beam to decrease its speed. Following

this introduction, the Fokker-Planck equation will be converted

from a partial differential equation into a difference equation.

The numerical solution of this difference equation is studied

in view of the constraints imposed upon the step sizes of

time and velocity, due to convergence and stability of the

numerical solution. A description of the particular case studied

and its initial conditions are then given. The difference equa-

tion is solved numerically and compared to experimental results.

The Fokker-Planck Equation as a Difference Equation

As shown in section II, the Fokker-Planck equation serves

as a method of calculating the time history of the atomic beam

distribution function in cases where the smooth field approx-

imation applies. One method of numerically solving this equation

is to convert it to a difference equation and solve using the

method of finite differences.

If the differentials in the Fokker-Planck equation are

replaced by difference quotients, the resulting equation is

knawn as a difference equation. Deriving these difference

ciuotients is straightforward. If there exists a function -

that has continuous fourth derivatives, then it is expandable

in a Taylor series expansion as in equations 34 and 35.

26
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(U) t., L" F. (34)'-'-

l &'(xZP t ______ - ______ (35)

Here is the step size. To find difference quotients for V(xZ' .

or " one solves equations 34 and 35 for the derivative

wanted. For instance, if equation 35 is added to 34 and

subtracted from the resulting sum, one obtains equation 36. -

Here S(x, means the function evaluated at the value v, ,'-

where V is an arbitrary step size. This is rewritten in equa-

(~ tion 37 as,

o01w) means that the error approaches proportionally to --

as W-, ) . This is known as a central difference formula for

the second derivative (Ref 14 pg 219), since the derivative

at point ', depends on values of the function at velocity

points before and after it. A forward difference formula for

the first de._ivative is derived from equation 34 by solving

directly for as in equation 38.

4 (38)
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As shown, this has errors proportional to i . Finally, a

central difference formula for the first derivative is given

in 39.

(39)

Corresponding to equations 37 thru 39, are similar equations

with the variable +- replacing X Obviously, the choice of

variable is immaterial.

To allow use in a partial differential equation, the

difference equations must be modified. To solve the Fokker-

Planck equation in one dimension, assume arbitrary step sizes

for time and position. Thus , becomes 4(x* & .)

and S(4W.& becomes . Partial derivatives with

I ~ respect to time and space can then be written as equation 40

thru 42.

_ ( 5- , forward difference. (40)

.. (' , central difference. (41)

-' ___,______-_____ _- , central difference. (42)

Again the choice of variable is of no substantial consequence. L

The only assumption is that the function has continuous fourth

derivatives for the variable in question.
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Many difference equations can be written for one partial

differential equation by using different combinations of for-

ward, central, and even backwards difference equations for

*2 the partials. The Fokker-Planck equation must be solved for

successive increments in time and velocity. Thus, a forward

or central difference must be used. To ease calculations and

file space, a forward difference will be used for the partial

with respect to time. The second derivative must be written

as a central difference if one wishes to avoid using a first

derivative to calculate the second derivative. The choice of

forward or central difference for the first partial with re-

spect to velocity is at this time arbitrary and will be left

* for later.

A time and velocity plane is constructed to solve the

Fokker-Planck equation. The axes are scaled from 0 to as large

as desired in increments of b and v- . The partial de-

rivatives presented in equations 40 thru 42 are written again

in equations 43 to 45.

- -______ ,forward difference. (43)

_ - . ,central difference. (44)

IT

- , t4 *~p-, ,central difference. (45) "

The superscripts denote the time position at which the function

29



* . ~917. 4.-I

is to be evaluated. The subscipts refer to the velocity position

at which the function is to be evaluated. All the equations

* necessary to write the Fokker-Planck as a difference equation

are now present. Two difference equations for the Fokker-Planck

equation are presented in equations 46 and 47. In both equa-

tions, the time partial is a forward difference and the second t

* partial with respect to velocity, is a central difference. The

only difference between the two is how the first partial with

respect to velocity is represented. In both equations the

force and diffusion coefficients have sub and super scripts

since in general they depend on time and velocity.

__A._ - (46)

____ ~S j~ 4  ~ 1(47)

The Fokker-Planck equation is a parabolic differential

* equation (Ref 19). Thus, the equation is solvable using the

explicit method of finite differences (Ref 14 pg 220). This

means that when the partials are replaced by the difference

quotients, the value of the function at the ith velocity can

be solved explicitly for the j + ith time. This is evident

from 46 and 47. All values in the equation are known except

for

The initial atomic distribution function is given by

Ramsey (Ref 12). This represents the atomic velocity distri-r

bution funtion as it comes out of the atomic oven. This

30



, distribution function will be changed as time proceeds as I.*

prescribed by equations 46 and 47. The general forms for Fo

and D11, are given by equations 15 and 29. The explicit values

used for the force and diffusion coefficient depend upon the

exact problem to be solved. The next subsection discusses the

particular case to be examined and derives explicit equations

for and

Slowing an Atomic Beam Using A Scanning Frequency Laser

Consider a monochromatic plane traveling wave counter-

propagated against a collimated atomic beam. The form of the

wave is given in 48.

- --.(48)

The force of interaction between thE field and the beam is

given in 49.

'k__ _ _ - _ ____ __ _ (49)
4 -1 .\j'. Pi j

The total diffusion coefficient was derived in equations 22

and 23. It is given here as equation 50.

164 &*v)IJPNaf3 1LL(+kNAj011) ' (50)

" This problem is treated in one dimension since the wave is

assumed to be of infinite extent and constant strength JL. r

31
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The wave vector k:- kl1 , since the laser is counter-

" . propagated against the beam.

In both equations there is a term bo kv . This is the

- effective detuning since - and - is the doppler

shift term. The laser starts at a frequency tuned to resonance

. with the initial velocity atoms 'V . The effective detuning

is zero at the peak of the force. As the laser frequency is

swept, different velocities come into resonance with the laser.

That is, different velocities make the effective detuning equal

to zero. The force is maximized when the effective detuning is

zero. .7

tikxrp:O -ur represents the velocity at peak force. (51)

At time 't 3 , the velocity -;:i , so that

, J(52)

- The force then assumes the form

If the laser frequency changes, then changes in a

- manner yet to be determined. As & changes, different velocities

will satisfy equation 51. Thus, the force will be resonant

(i.e. a maximum), for different velocities of the atomic velocit F--

32



distribution function as the frequency of the laser is changed.

-. The force is opposite the beam so the atoms are slowed. If the

laser frequency is changed so that the atoms in the beam slow

just enough to remain at the peak of the force, then

m - P 41"kAk (54)

* Integrating 54 yields a velocity at which the force is maximized

at

Here v, is a constant of integration and equals the initial

velocity that is on resonance. Equation 51 gives another relation

for the velocity at the peak of the force. Combining these two

yields

. ~v( AL *1f" -"

So if the atoms stay in resonance with the force, then the

detuning changes with the scanning frequency of the laser as

~ ~ ~ ___~~( (57)

This is the detuning rate at which the atoms slow just enough

to stay in resonance with the laser. If the rate is any faster -

33
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the atoms will not be slowed enough to stay with the peak

force. The detuning rate should be less than the maximum cal-

culated in 57. This indicates the inequality

Ri. . ' , 1k has units of S'. in MKS. (58)

The physics of the problem are now established. A laser

interacting with an atomic beam which is characterized by its

distribution function , exerts a force given by 49. The

laser initially is in resonance with an initial velocity -i",,"
The laser frequency is swept at a rate given by 58. This causes

atoms to slow down and the velocity distribution function is

changed. A diffusion coefficient given by equation 50, causes

heating and moves atoms out of the peak of the force. As the

laser frequency decreases, substantial numbers of atoms are

slowed to lower velocities. The final velocity the atoms are

slowed to is proportional to the doppler shift v- .-

The force in equation 49 is Lorentzian in i . Thus, it has

a characteristic full width at half maximum spread in frequency

of (P-V2JV'a. . This corresponds to natural and power broad-

ening of the force due to the atomic response (Ref 11 pg 226).

For typical numbers, this is much narrower than the FWhiM of

* the initial distribution function. So as the laser is swept

in frequency, the distribution function becomes narrower and

"- moves to a slower velocity.
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Stability and Convergence Analysis

As mentioned before, the step sizes for At and a

are arbitrary within limits set by stability and convergence

criteria. The convergence criteria are derived using the prin-

cipal that the numerical solution approaches the real solution

as &-j and At tend toward 0. Stability is defined as the

damping of error terms as they propagate through the calcul-

ations in time. The two difference equations introduced in

equations 46 and 47 are investigated for convergence criteria

first, then for stability. The two equations are then compared

and the one that has the least stringent requirements on

and at~J is chosen to solve the Fokker-Planick equation.

The equations needed for the convergence and stability

analysis are equations 59 thru 61. Equation 59 is the Fokker-

Planck equation. Equation 60 is the Fokcker-Planckc equation

rewritten as a difference equation, with a forward difference

used on the first partials, and a central difference used on

the second partial with respect to velocity, henceforth called

method 1. Equation 61 is a difference equation, with the ve-

* locity partials written as central differences, and the partial

with respect to time, written as a forward difference, hence-

forth called method 2.

AS 'F) t(L 5 (5)

t~~F,~ ~ ~ [b&,1~t~,1  (60)
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As before, the superscripts refer to time increments and the

subscripts refer to velocity increments. From now on, the

convention will be used that all superscripts will be dropped "

unless they do not equal j. Therefore, all difference equations

will have only one term with superscripts. The convergence

analysis for methods 1 and 2 follow.

The exact solution to the differential equation is O'kii

4 and the numerical solution is 4 . The error involved with

substituting the numerical for the real solution is -t.

Thus,

,andL

To analyze the convergence constraint for method 1, substitute

the above relation into 60 and collect terms to obtain

~ (62)

Here ht A Taylor series expansion of * i,

yields

36
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Substitute the above relations into 62 and cancel the appro- Ao

* priate terms to obtain 63.

er' Erl 4 t
* ~ 2D~ ~(63)

Here ~-~f(. TCrt) -f(~. i I~?MI 

22% -U

with all t~expressed as r -k b-

The magnitude of the maximum error in time4'-4A %

is Es" To calculate this error, take the maximum

values in equation 63 and the magnitude of

E -I] (4

where t)!. and f. are the maximum values of and

This leads directly to 65.

E 4v -t Ei.v.j 4 A (65) K
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If the coefficients of V~ and i are positive, then

the following inequality holds. ~ ] . ir1d (6

and thus, + &~ ~t1IV Applying this result at

* different times leads to 67.

The last term h~('V .4-Ii since If (

at time

Equation 67 shows the difference equation will converge

to the real solution after j iterations. This will happen

*when initial errors are zero and when &t is arbitrarily small

with I" finite. The initial condition in this problem is the

* velocity distribution function, which is theoretically and

* experimentally well known. So the initial errors can be made

* zero. The term can go to 0 as &k goes to 0 as long as

*is finite. is given in 63 and by inspection it is finite

as long as ~,and C.

* As pointed out above, the coefficients of Eland

*must be positive for 66 arnd 67 to hold true. So the convergence

*criteria are found from requiring that the coefficients be

positive. Therefore,
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Now Dmax 3 j 51 ' 2%C -Fa+

and Fmax = - F k '

Obviously Dmax can be made positive since the Rabi frequency

can be made larger than the Einstein A coefficient. Equally

obvious, the term Fmax is always negative for this case. Thus,

the first and third equations can provide no constraints upon

the difference equation. The second equation is the only equation

that can provide such a constraint. To find this constraint,

solve the inequality for r. Replace r with its value b

Upon doing this one obtains

h~t 4 (68)

These are the convergence criteria for method 1.

The convergence criteria for method 2 are found in much

the same way. Let the real solution corresponding to the differ-

ential equation be 4 . The solution to the difference equa-

tion is . The error involved is t This leads again

to.
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Substitute this into 61 and obtain 69.
r.t- .Fn

--, ,v .Y ., ,,,, 4j(9

~ tb~I~v~,.. 4 _ _

^.%"% IP
Expand the terms , as Taylor series as

before. Collect all terms in '%A and express them as M. Equation

69 then becomes 70.

Ir + gt'tV (70)
r

Where M = v , j '7 t ,

The maximum magnitude of the error for the calculation at time

V is E , so that once again,

This is true if all coefficients of the error term are positive.

This gives the constraint upon r such, that the solution from

the difference solution converge to the solutions of the differ-

ential equation.

-. _ (,, (71)
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Equations 68 and 71 represent the constraints upon methods 1

and 2 respectively for the solutions of the difference equations

to converge to the solutions of the differential equation.

The stability constraints are now obtained. Expand the

velocity cistribution function as a fourier lattice series

(Ref 20 pg 3). One then obtains 72.

9 p itt wn- where "et(k' t (72)

and t(

The subscripts denoting velocity have been changed to n since

a complex term has been introduced. Equation 72 shows that

the distribution function at velocity n is a series of fourier

components. Each component in this expansion is a solution to

60 and 61. If the coefficients are constant then each component

of this series can be seen to be a eigenfuntion of equations

60 and 61. Substitute the component \),(k into 60 and obtain

.:,,, (c . ~) - + r rvFt.'j (73)

Obviously, the term in brackets is the eigenvalue. So each

component of the expansion conforms to equation 74.

(74)..

Equation 60 and 61 show that each value of the velocity

distribution function for time t-A" is calculated using
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existing values of the distribution function at different

velocities. If an error is intrmduced as calculations proceed,

because of round off errors or other problems, then it affects

subsequent calculations. The error is

4t\" - U , where 'iA is the value that is incor- (75)

rect at time j and velocity n. This error term will give

solutions to equation 60 of the same form as 74 except that

\1 will be tn . Starting with 74 and t'!" instead of

d\ at time VO , Nit*

For the next time iteration one obtains

'A g~*4 (76)

Here the superscripts on the e's are time increments and the

superscripts on the X 's are exponents. For each time iteration, S

the error is multiplied by the eigenvalue ..

Stability for numerical calculations means that as succes-

sive calculations are made, the errors tend to damp out. Looking

at 76, one sees that after j iterations

V-*~ (77)

If due to the initial error t one requires that after

iterations et ,then obviously 1M( .If IM) '

then the errors grow instead of decrease. To find the requirement
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for stability then, one requires that -

The constraint upon method 1 is then

& L &;, . I (78)

This simply states that the eigenvalue found in 73 has a

magnitude less than 1. Euler's relations have been used when

writing 78 to turn the exponents into sin's and cos's.

Calculating the indicated magnitude is tedious but

straightforward. The real and imaginary parts of the equation

are squared and added together. The square root of the resulting

quadratic is the magnitude. After this, one solves for r and

obtains 79.

( '(79 )

This calculation is made for one particular % .

Since the value of the velocity distribution is a sum of a

series of the -sA s , each '\Ja must remain stable. The errors

must not be growing in any of the components of the series,

or these errors will swamp out all the other components. For

every value of , equation 79 must be true or the difference

equation will be unstable. Thus, every value of 9 that gives
U]

a unique value to 79 must be satisfied. Following Kittel

(Ref 20 pg 3), the allowed values of e are given by the
periodic boundary condition that
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. . . (80)

*This will only be true if q~lotllor Q ± r

So the values of fa that are allowed are

~ (81)

Since 79 must be satisfied for all values of (a, only

the most stringent requirement on the inequality is important.

* Since rtin 79, it can be seen that what this equation

really means is that &t must be smaller than a definite

number for every value of &-v *The most stringent requirement

corresponts to the smallest A.that is calculable. To min-

imize the &,t ,the (1-cos G term must be maximized. The

maximum value for this term is 2. Place this in 79 to obtain

the constraint on &t for method 1.

~4 ;L___ __ (82)

*which becomes &k-L a 0.. bV1.j% F upon cancellation of

appropriate terms. The terms cancel since Fmax =- 1 ax1
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Inspection of 68 and 82 show the criteria for convergence

and stability are the same for method 1.

The stability criteria for method 2 are found in a

similar manner. Insert equation 72 into 61 to obtain

W.%;7r (83)

Using Euler's relation

,: e ".S,-j , where b (84l.)

The term in brackets is the eigenvalue. As before its magnitude

must be less than 1 for stability. So the constraint upon

method 2 is

I -1~ (85)

Solving this inequality for r and remembering that r =

one obtains 86. This is the constraint upon the time increment

vs the velocity increment for method 2 due to stability require-

ment s.

.(86)

Once again, all terms of the expansion must obey the require-

ment that they not have errors growing as calculations proceed.
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Thus, all values of cosla must be examined and the most

stringent satisfied in 86. The maximum value for cos 6 is

+ 1, and now

& i.\ for cos =1, or (87)

1..
t~~- ~ ~ for cos ~=1

These criteria agree with Roach (Ref 21 pg 45).

The above stability analysis is valid only for local

A conditions. An eigenvalue must be constant for a given problem.

Both the eigenvalues 73 and 84 contain the terms Fmax and Dmax.

In the original equation these terms depend on velocity and

time. The constant values of.the peak force and diffusion

coefficient were used so that the calculations could be per-

formed. Thus, the stability analysis is really only valid

for regions where the force and diffusion coefficients remain

constant with respect to their current values. This require-

ment is met if the step sizes for velocity and time are small

enough to limit the change in force and diffusion. So overall

constraints on the step sizes are given by the requirement

that the force and diffusion coefficient can not change dras-

tically over the step size. This leads to the term local

stability. If the local stability conditions are not met,

then, certainly overall stability can not be insured. Thus,

local stability is a necessary, but not sufficient condition

46
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for overall stability.

The two methods are now compared to determine which

has the least stringent requirement on the time vs velocity

step size. An initial step size will be used, that insures

the force and diffusion coefficients do not change significantly

over the step size. The most stringent constraint on each

method will be compared to see which offers the largest time

vs velocity step size. Comparing the most stringent constraints

will insure that all stability and convergence criteria are

met. Picking the method that has the least stringent of these

constraints promises faster run times.

Equation 88 shows the requirement for stability and con-

vergence for method 1. Equations 89 and 90 give the require-

ment for convergence and stability respectively for method 2.

L2..

D. - b "I(88)

14 ~ (89)

,b. ". ' t . (90)

From before we know that Dm is

Dm ZA - l- "4 XJ A %ix) (9')

and Fmi jwlI1r)1LL~

I-4f
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Fm= ~J2 ~ ~ (92)

For any realistic case, J-1 is 5-10 times larger than A.

After discarding insignificant terms, an order of magnitude

calculation for on resonance will yield

Dm= Oh A_ and (93)

Fm= J2~ (94)

For comparison purposes of the two methods, values are needed

for Dm and Fm. Using the following values, one obtains

Dm= I O2

where l~ i O w

Methods 1 and 2 can now be directly compared to see which

has the least stringent requirement on the time increment vs

the velocity increment. For method 2, the constant value in

90 is

(F~ I ~Method 2 (95)
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For method 1 the calculation is more tedious. A table of values

* .' calculated from 88, of Av vs ut is given in Table I. This

shows that method 1 has a less stringent requirement upon the >

time increment. So method 1 will be used as the difference

equation to solve the Fokker-Planck equation for new values

of the velocity distribution function.

Analysis of Scanning Frequency Laser Cooling

The theory of using a scanning frequency laser to slow

the speed of an atomic beam was developed earlier. A specific

case is now analyzed using this theory. Prodan and Phillips

(Ref 10 pg 137) report the use of a scanning frequency laser

tuned to 589 nm (Ref22 pg 3826) to slow an atomic beam. The

laser is tuned so as to initially interact with atoms at a

velocity of 1100 m/sec. The laser is swept at a rate of 6.4E11

Hz per sec. The laser intensity is 5100 watts/m2 (Ref 23).

Experimental results were reported for scans of 480 and 750

MHz. This information will be used to generate a case similar

to this so comparisons can be made between theoretical and

experimental values. -

Several important constants are needed. The Rabi

flopping frequency is given in 96.

-n A 1.- (96)

This is because the dipole moment is -
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'" 

-

*7.

Comparison of Au vs At For Method 1
Stability and Convergence 

Requirements 

,

" 

(

Au- (m/sec) At= (sec) '.-,'>

. 7.59 x 10-8

3.75 2.85 x lO t

.5 3.80 x 10- 7

1.0 7.59 xC 10 -7'

1.5 

1.14 x 
i0

- 6

2.0 1.52 x I0
- 6

2.5 1.90 x 10- 6

3.0 2.29 x 10- 6  L

3.5 2.66 x 106
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--- r (Ref 13 pg 1086), (97)

and E is

- (98)I

Here, I is the intensity of the laser in watts/ma . Using

Prodan and Phillips numbers then, A = S.,O '  sec< . This

gives a maximum allowable scan rate of I.1bIO ' sed"' from

equation 58. Prodan and Phillips reported a rate of 4.02E12 "i

sec and 6.28E12 sec . Both of these are slower than the

calculated maximum value. Other needed numbers are

Table 1 gives acceptable values of the time increment for

various values of the velocity increment. If the force and

diffusion coefficients are not to change by 1/10 over the step

size, then the velocity step must be less than 5 m/sec. A

step size of 1.5 m/sec for velocity and 52-7 sec for time will

be used. -

The program used to solve the Fokker-Planck equation

is given in Appendix I. A brief description of the program

will be given here. Figure I is a flow chart for the program.

51

, . ..°



In.-u.

4..

L a t i n t a D a t v e

,..?

Print Initial Data Vectors.

Time Loop# J counter,
Change Force, Diffusion Coefficients.

Calculate New Distribution.

Calculate Area Under Distribution 
-'

STOTNUM 4
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The program is written in Fortran 77 and was run on the AFIT
Vax computer.

The program has three start modes. One exits the program

immediately. The second starts the program for the first time,

and the third restarts the program if it was broken off in

* the middle of a run. The program is sometimes terminated

before completion because the running time becomes excessive

" for various combinations of at , w , and the rate of de-

tuning. When the program is restarted, the data vectors are

read back into working memory. These vectors are saved as a

routine process within the program. The program then skips

directly to the section that solves the Fokker-Planck equation

using the data vectors and method 1.

The initial start mode reads in 21 values which charac-

terize the problem. The data vectors are then created. The

first data vector is the velocity. It is calculated using a

simple summing process and is called VELCTR. The initial

velocity distribution function is calculated using equation

101 (Ref 12 pg 20). It is named DFTN.

where c( = and ir= Velocity (m/sec)

k = Boltzmans constant,

T Temperature ,.

m = Mass of atom.
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The force is computed using equation 49 and is called FORCE.

The diffusion coefficient is calculated using equation 50

* and is called DIFUSN.

The section that solves the Fokker-Planck equation using

* difference equation method 1 is the major part of the program.

The values for the distribution function are calculated for X

* the next time increment using values at the current time.

* Thus, the driving mechanism for the program is an iteration

* loop in time with counter I . Instead of recomputing the force

* and diffusion coefficients at each time increment, a interpol-

* ation routine is used to shift the values down the velocity

axis an amount equal to the amount they move in the time

* increment. This can be done because the force and diffusion

coefficients are represented by a curve dependent on the

*velocity that is translated to lower velocities as time proceeds.

*An examination of equations 49 and 50 will convince the reader

* of this.

The change in the distribution function called DELDFN,

is calculated for the ith velocity and the j + ith time using

- the method 1 difference equation. This change is added to the

old value of DFTN and a new (i.e. j + ith) distribution funtion

is calculated all along the velocity axis. The area under the

distribution function represents the intergral of the curve

over all velocity space. Thus, it represents the number of*

* atoms under consideration. This number should remain constant

* since the number of particles in the beam is a constant. The
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value for the area is called TOTNUM and is calculated using

W " a rectangle integration formula.

The results of the calculations are printed into two

different files. A table of output values called WRTDAT1, is

used as the input to the graphics package. The table has four

columns with no headers or other identifying information. The

four columns are the VELCTR, DFTN, FORCE and J values respect-

ively. The second output file is called outputx where x is a

number thbt keeps track of the output file number. This file

contains the time increment and the value of TOTNUM, as well

as the values of velocity, DFTN and FORCE. The outputx and

WRTDAT1 files contain values for five different time increments.

It should be noted that the do loop that runs the outputx

Cand WRTDATI files, prints every Mth velocity value. This can

significantly cut down on the file space required. It does

tend to cause losses in the accuracy of the results since the

maximum value for the distribution function may be in between

the Ith and I + Mth values. If M = 1, the stability and con-

vergence criteria suggest that the maximum value will be printed

for all the values at all the velocities.

The values for TIME and TOTNUM are printed every 100

time iterations. A counter called Q is incremented each time

step. When it reaches 100, the data vectors discussed above

are stored and the val'es for TIME and TOTNUM are printed. The

value of TOTNUM gives a running check of the stability of the

difference equation. If TOTINTU, changes significantly, it is a
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sure sign that the difference equation is unstable.

To insure that the convergence and stability require-

ments are met, the program will be rerun with half the step

*sizes for the velocity and time increments. If the values

of FORCE, DFTN, or velocity where the peak of the distribution

function sits, change much with respect to their initial

amounts, then the step size will be rehalved untill it changes

5 no more than 20%Z. The following is a description of the results

for the difference equation for various initial conditions.

If the laser is not swept in frequency, then the force

p interacts with only one velocity of atoms. Figure 2 shows the

initial velocity distribution function for the atoms before

the laser is turned on. Figure 3 shows the distribution function

after the laser has been turned on for one millisecond. As

shown in figure 3, the force causes a narrow spike to appear

in the distribution function. The peak is very narrow compared

to the initial distribution function. The computer took ap-

proximately 950 CPU seconds for this calculation.

If the peak is Gaussian, then the FWHM is related to

* the w spread of the peak by 102.

~ (102)

The is the root-mean-square deviation of v from the mean -%

of the Gaussian distribution (Ref 18 pg 214). It therefore .-

provides a direct measure of the width of the distribution
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function about the mean -r (Ref 18 pg 34). The T is important

because it can be related to a characteristic temperature

for Gaussian velocity distribution functions.

Following Reif, the a' is related to this temperature

by

T= 0= -. ( 03)

where k is Boltzmans constant and m is the mass of the parti-

cles (Ref 18 pg 266). So the narrower the peak in the distri-

bution, the "colder" the temperature of the atoms. Using equation

103, one can compare the initial and final temperature of

the atomic beam by knowing the FW2M of the distribution function

.L before and after the laser interacts with the beam. The initial

FWHM of the velocity distribution in figure 2 yields a tem-

perature 543.6 OK. The final FWIM of the velocity distribution

from figure 3 yields a temperature of -1 .2 K. As can be seen,

thL beam is "cooled" by the laser interacting with it. The

laser soon moves all the atoms in resonance with it to slower

velocities. If the frequency of the laser does not change,

the atoms will assume a steady state solution much like that

shown in figure 3.

The atoms speed is not slowed appreciably for this case.

This is because the force function is very narrow. When the

atoms slow by a small amount, they go out of resonance with

the laser. To get a feel for how small a change in velocity .
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this is, look at the FWHM of the force. The FI of the force

S:c-, is (Ref 11 pg 226).

F WIM = + = 1.41 Id, sec . (104)

This FHDI has units of radians/sec. In velocity this converts

to

= = 14.1 m/sec. (105)

Thus, the atoms only have to slow -15 m/sec and they are out

of resonance with the force. This is why the laser frequency

must be swept.

To see the effect of the laser frequency sweeping, a

case similar to that of Prodan and Phillips will be run. The

laser is swept for 480 MHz at a rate of .64 GHz/millisec. This

corresponds to a rate of 4.02E12 sec - in radian measure,

with a total time of 7.5 %-, sec. Figure 4 and 5 give the "

initial and final positions of the distribution function.

As can be seen, the laser sweeps the atoms to a slower overall

velocity as well as narrowing the peak. The peak of the dis-

tribution function is at a velocity of 740 m/sec. The time

and velocity steps have been cut. The step size was halved

since the value for the peak of the distribution function

changed by 27% after being halved once. This was felt to be

large, so the step size was repeatedly halved. This time the
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resulting change in the peak of the distribution function was

23%. The FWHM of the narrow peak is 7.03 m/sec. This corres-

ponds to a temperature of 2.48cicY' *K.

Another case experimentally run by Prodan and Phillips -'

was with the laser sweeping 750 MHz at a rate of 1 GHz/millisec.

This corresponds to a rate of 6.28E12 radians/sec' and a time

of 7.5 vlS"'4 sec. Figures 6 and 7 show the results of the dif-

ference equation for this case. Again the overall results are -.

the same. The atoms are slowed down and the distribution L

function becomes very peaked. The FWH.M is 6.5 m/sec, which

-' 0corresponds to a temperature of 2.122i "' K. The final

peak of the distribution function is at velocity 586.75 m/sec.

If the atoms were following the force exactly, theory would

expect the final velocity to be 660 m/sec.

An interesting calculation is to see if there exists a

lower limit on the translational velocity of the atoms and

if there exists a lower temperature bound on that peak. A

rate of 4 .02w6'%' sec was used for a time of 2.475s|I" sec,

Figures 8 thru 13 show the atoms slowing down as the laser

frequency sweeps down. The calculations show that the trans-

lational motion of the atoms can be stopped completely. Indeed,

they can be turned around and be made to go the other direction. -

However, a lower limit is found to the temperature. The smallest

FWHM measured from the calculations was 6.25 m/sec. This

corresponds to a temperature of 1.96 iti" 6K. ii
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Prodan and Phillips of the National Bureau of Standards.-7

have reported experimental results for a similar case to that

just analyzed. In that experiment, the laser was focused an

amount equal to the divergence of the atomic beam (Ref 23).

Thus, the electric field is always perpendicular to the atoms "

velocity. This was done so as to make the laser look more like

a plane wave. Table II sumarizes their results and compares

them to the results from the analysis performed before.

Included in Table II are theoretical calculations for the

velocity at which the peak of the velocity distribution function

will end. These values are obtained from 106.

(106)

As can be seen from Table II, the values for the end

velocity of the peak agree with the experimental values

within 10%. The values for ?WI{ do not show such agreement.

As will be shown later, the guassian nature of the laser

leads to a different force term from that used in the

analysis. This different force is analyzed to order of

magnitude to see if it should cause changes in the final

value of the FWHM. The conclusion at this point is that

the guassian nature of the laser does not make significant L

changes unless focussed to a very small spot size. Prodan

and Phillips do not give experimental error bars for the

-. values of the FWHM (Ref 10 pg 140). Thus it is possible
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TABiLE IT

Comparison of Experimental, Numerical and
Theoretical Values For Swept Vrequency Laser Cooling

___________Experimnental Numerical Theoretical

Case 1 Final Velocity for
On0 ?z Peak of D~ist. Pin rn/sec 74n rn/sec 8?nf n/sec

Scan 17WRlM For Peak
of Dist. 40 m/sec 7.0 rn/sec -

rase 2 Final Velocity for
750 M~tz Peak of Dist. 62n rn/sec 596 rn/sec 6fgO m/sec

Scan rW4 For 'Peak
of Dist. 40 rn/sec 6.6 n/sec -
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that the factor of six difference between experimental

and numerical values for the FWHM is not exceedingly

large. Furthur data is required for a more definite

resolution to this descrepancy.

The important consideration is that the numerical

calculations predict the overall characteristics of the

experiment quite well. Only one major effect seen exper-

imentally is not shown by the numerical calculations. This

effect is best seen by looking at figure 14. This is a

reproduction of Prodan and Phillips data (Ref 10 pg 139).

As can be seen, the values for the peak of the velocity

distribution function decrease for a further slowing of the

beam. A review of figures 8 thru 13 shows this effect is

not seen by the numerical calculations. This is an impor- -

tant consideration since this effect is responsible for

current lower limits obtainable experimentally for trans-

lational velocity reduction. At this time the descrepancy

between experiment and numerical calculation is unresolved.

The numerical calculation predicts that the beam can be

slowed arbitrarily close to 0 m/sec in translational speed.

As seen in Table II, the values for the F~dhM for

the two different experimental cases remain nearly constant.

This is explained by the fact that Prodan and Phillips ran

the 750 MW~z sweep at a slightly faster rate than the 480 Daz

sweep. This resulted in the interaction time for the laser

and atoms being equal for the two cases. For both runs,
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the laser interacted with the atoms for 7.5 Iz- 4 sec.

This suggests the FWHM is a function of total interaction

time. To check this hypothesis, another computer calculation

was performed for the 480 liz sweep. In this case the rate

was increased to 6.28v._ sec -. As can be seen in figures

15 and 16, the final velocity of the peak is at the same

value as before. The FvT1M of the peak has changed to

6.644 m/sec for this case. This is a reduction in the FWM

of 12.1% from the previous case.

The physical cause of this effect is not yet under-

stood by the author. It does lead to the intresting

prediction that for a given frequency sweep, a faster

sweep rate will yield narrower FWHM at the end of the

interaction.

Cook gives the lowest achievable temperature for the

case of a standing wave laser cooling an atomic beam using

the dipole force to slow the atoms (Ref 24 pg 979). To

within an order of magnitude estimate, similar arguments

yield a lowest achievable temperature for the traveling .
'

wave case of

~ (107)

Here the - is related to the temperature by equation 102.

This yields a smallest expected FWfMM of
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(108)

The above formula yields a value of the minimum allowable

FIHM of about 1.7 m/sec. Table II shows the numerical values

of FWHM are in agreement with this calculation in that they

do not violate it.

As mentioned before the force induced by a guassian

laser is different from that calculated for an external

field in the form of a plane wave. To see this difference

the following is presented.

Consider the form of the force in equation 15

evaluated for an external field of a guassian laser. The

field of the laser is presented in equation 109.

Here %., is the beam waist and

A is the field strength, A:J.,, - ,A...'

When this inserted into the force equation, one obtains

a translational force the same as before. A transverse

force is also present. For on resonance ( b =0), the

transverse force has the form of equation 110.

,. ki V " (110)
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If the laser is counter propagated to the atomic beam it

will defocuss and move the atoms away from the on axis

position (Ref 11 pg 20). This is because for a counter

propagated laser io , Thus, since the gradient points

inward, the direction of the force is outward. If this

force is of the same magnitude as the translational force

then the on axis velocity distribution function will have

a smaller value. This could change the value for the FWHIM.

This is a critical question since the numerical values of

the FWHM are smaller than the experimental values. To

resolve if the guassian nature of the beam should be

neglected a comparison of the relative magnitudes of the

translational and transverse forces is performed. For-

(06 this:-eomparison the maximum value of the transverse force

is needed. This is computed much as before. The only

difference is that a gradient must be taken of the new

Rabi frequency. After this is accomplished one obtains,

The maximum is now calculated noticing that ki > A . ,.

and that a maximum will occur when r: w . This leads

to a maximum transverse force of,

W .iI-j

Comparison of numerical values with the maximum translational

force shows that &l h for the two forces to be equal.

8o
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Thus the laser would have to be very focussed for the two

forces to be of the same magnitude. This shows that for

lasers with a waist of 1 cm the transverse force is negligible.

Thus the use of a plane wave for the external field should

not affect the F WH value.

The amount of spread in the peak of the velocity

distribution function is a measure of its temperature. If

the velocity and the spread in the velocity is small enough,

the atoms can be inserted into a trap for neutral atoms.

This trap is described by Ashkin (Ref 25). Cook and Hill

have a new type of neutral atom trap using the "radiation

force exerted by the thin evanescent wave that is generated

on the surface of a dielectric medium when laser light is

totally reflected internally at that surface"(Ref 26 pg 258).

The requirement on the translation.l speed for both these

traps are -5 m/sec. Using a one dimensional analysis there

seems to be no reason why these requirements cannot be met.

A discussion of the amount of confidence warrented

in the numerical calculations is now in order. The stability

and convergence analysis govern the step size for time and

velocity. To meet the smooth field approximation, and

hence the condition for local stability, the step size of

velocity was limited to less than 4 m/sec. After the

calculations are performed, the step sizes are halved to see

if there are any changes in the answers. When this is

accomplished, it is found that changes made independently

81. o
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for the time increment, do not effect the results as long

as the time increment is less than its maximum allowed by

equation 96. Changes in the velocity step size are found

to effect the answers. This indicates that the stability

of the numerical calculations are assured but that some

question convergence of the answers to real solutions

due to truncation errors still exist.

To investigate the convergence question, the 480 Hz

sweep was rerun several times with halved velocity step sizes.

In each case the time step size was halved along with the

velocity step size. The time step size was checked to

insure that it was in accordance with equation 88. The

time step size was independently varied to insure that the

only changes seen were due to the change in the velocity

step size. Table III summarizes the results of this invest-

igation. Included are times that the computer took to run

the case. As can be seen, the run times quickly become very

long. Most values are not affected by changes in the velocity

step size. The value most sensitive to the step size is the

peak value of the velocity distribution function. Table III

shows the percentage change from one step size to the next

for this value. The smallest change seen was 23%. All other L

values show percentage changes that are smaller. These small

changes, along with long run times at small step sizes,

convinced the author that acceptable limits of numerical

accuracy have been reached at and.
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TABLE III

Effect of Halving Velocity Increment on Nuimerical Results

* 1fPeak Value of Final Position f change in jRun Time
m/sec) Velocity Dist. For Peak Dist. Peak Value@--"V (CPU hrs.)

1.5 1.177 734 rn/sec 27% .32

.75 1.614 736 rn/sec 23% .72

.375 2.111 738 rn/sec 23% 2.5

.1875 24755 739 rn/sec -8.7
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The changes in the answers are attributed to trun-

cation errors. The FdHM of the force function is " 14 m/sec.

With a step size of 1.5 m/sec there are only about nine velocity

steps within this Firitv. This causes truncation errors due

to the course nature of the force function. The stability

of the calculations insures that these errors do not

propagate and cause the results to wildly diverge.

However, the errors are slow to converge, and so affect L

the final results. As the velocity step size is reduced,

the calculated answers converge to the real solutions. A

similar argument holds for the peak of the velocity dist- L

ribution function. The peak becomes very narrow as the atoms

slow down. Thus, small velocity step sizes must be used so

enough sample points are obtained fcr the peak. Too large 1.
a velocity step size will cause the peak to not have enough

sample points. Thus errors will be created in the calculations

unless the velocity step size is small enough. Small enough

will be defined as there being 20 points under the narrowest

function.

The final choice for the velocity step size is .375 m/sec.

The time step size is 1.25-,'O"  sec. This time step size

is in agreement with equation 88. This velocity step size

is used since it provides -20 points under the narrowest

function. The narrowest function, and the function most

sensitive to changes in the velocity step size, is the peak

of the velocity distribution function. It changes by 235
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when the velocity step size is changed by halving it.

If this change is neglected then all numerical results

agree with the experimental results within 10o. Neglecting

the change in the peak of the velocity distribution function

is allowable since it is only important if the peak decreses

as the atoms are slowed. Since changes in the velocity step

size always increase the peak value of the velocity distribution

function, neglecting it for purposes of determining accuracy

is acceptable.

The important parts of this discussion are now

summarized. The numerical results agree with the experimental

results to within 10% for all values except for the FWI{M

and the peak of the distribution function. These two values

are very sensitive to changes in velocity step size because
of truncation error. For a step size indicated before the

FvM are believed to be correct to 15%. The minimum FWHM-

observed numerically agree with a calculation for the minmum.

allowable FWHM. The guassian nature of the laser is shown

not to effect the F'.;'M as long as the laser is not focussed

to micron size. The numerical calculations give rise to

the prediction that for a given amount of frequency change, "

a faster sweep rate produces a narrower F'JHM.

L
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IConclusions and Recommendations

Review of Major Results

Ehrenfests theorem, along with an assumed form of the

external electromagnetic field, yields the set of coupled

differential equations 7 thru 10. These equations give the

interaction force between the laser and the atoms. The in-

ternal dynamics of the atom is described by the optical-

Bloch equations 8 thru 10. This set of equations are consis-

tent with a more general set of equations that are developed

by Cook (Ref 13 pg 1087).

In the smooth field approximation, the set of equations

condenses to a single partial differential equation known as

the Fokker-Planck equation. This equation is the basis for

the analysis performed in this thesis. Along with the Fokker-

Planck equation, coefficients are developed for the force

- and diffusion terms. These are presented in equations 15 and

29 respectively.

The Fokker-Planck equation is rewritten as a difference

equation to allow numerical solutions tD be obtained. Several

difference equations are analyzed using convergence and

stability criteria. Equation 60 is sel~ected as the difference

equation of choice because it has the least stringent require-

ments on the step size for time and velocity.

This difference equation is used to analyze the

Fokker-Planck equation for a one dimensional geometry. A

plane wave laser is incident upon a one dimensional beam.
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The laser frequency is swept at a rate given by equation 58.

This sweeping brings different velocity atoms into resonance

with the laser. The laser imparts quanta of momentum to the

atoms and thus slows them down. The atomic velocity distri-

bution function reflects this slowing of atoms by changing

from a thermal distribution to a sharply peaked distribution. -

In general terms, the peak of this distribution follows the

laser frequency and slows to low translational velocities,

with corresponding narrow spreads in the peak.

This analysis predicts that the translational velocities

can be brought arbitrarily close to 0 m/sec. The minimum FWHI-

of the peak in the distribution function is 6.25 m/sec. This

corresponds to a temperature of 1.96 x'1 *K, assuming the

m - peak of the distribution function relaxes to a Gaussian distri-
bution. This temperature is a measure of the spread in energy

of the atoms within this slow peak. It is also a direct measure

of the width of the peak. The minimum FWHM agrees with a limit

developed by Cook for the smallest allowable FWHM.

The numerical calculations suffer from truncationerror

unless the velocity step size is small enough. Small enough

is defined as there being 20 velocity points on the narrowest

peak in the calculations. The narrowest peak is the distri-

bution function after being cooled by the laser. The value kI
of the maximum of this peak is the value most sensitive to

changes in the velocity step size. A velocity step size of

.1875 m/sec gives good results but the run time on the computer
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is 8.7 CPU hours. This run time is clearly excessive. Thus,

a velocity step size of .375 m/sec, and a time step size of

1.25%10' sec are used. This results in run times of 2.5

CPU hours. The numerical results are believed to be correct

to within 101Z for these step sizes.

Conclusions

The Fokker-Planck equation is a powerful tool to

study the effects of resonant radiation upon atoms. All

effects experimentally observed except one are predicted

using a simple one dimensional analysis of the problem. The

one dimensional m~del predicts that the atoms can be brought

arbitrarily close to 0 m/sec in translational speed.

Although truncation errors force a small velocity step size,

and hence long run times, the overall method is still useful.

The Fokker-Planck analysis predicts that for fixed frequency

sweeps, a faster sweep rate will yield narrower FWMTr at the

end of the interaction.

The Fokker-Planck equation can be used for analysis

of other types of resonant radiation interaction between

atoms and photons. The standing wave laser used as an atomic

trap is a g-od example. As long as the atoms enter the trap

at slow velocities, the Fokker-Planck equation adequately

describes their motion.

In cases where the smooth field approximation is

violated, the Fokker-Planck equation should be replaced by

the quasiclassical equations developed by Cook (Ref 13 pg 1087).
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An example of this case is found in the optical Stern-Gerlagh

effect. Due to the quantized nature of the electric dipole

moment, the atomic distribution function will be split in

half by oppositely directed forces. The Fokker-Planck equation

does not yield this result because inherent in its derivation

is the assumption that the wave packet under consideration

is small compared to changes in the external field.

Recommendations

Further work in the area of numerical analysis of

resonate radiation can be accomplished in at least three

different areas. No doubt other interesting applications are

present, but these three seem the most obvious or potentially

usefull to the author.

4.9 The Fokker-Planck equation should be used to analyze

the standing wave laser used as a neutral atom trap. Such

a trap was proposed by Ashkin in 1978 (Ref 26). This type

of trap will allow doppler free spectroscopy to be performed

upon the atoms inside. The nature of the Fokker-Planck equation

reverts to its general form, as in equation 112.

(FS)~ (112)

The force will be given by equation 113 (Ref 13 pg 1089)

(113)
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The diffusion coefficient is

* , * .i.

* * ( 4 V.J A 4 W )

~ ] (114)

The Fokker-Planck equation should be analyzed in two

dimensions for the case under consideration in this thesis.

The form of the external field is changed to a Gaussian beam,

as in equation 109. The force is then given by equations 49 L I."

and 110. This analysis may allow determination of the cause

of the observed decrease in the peak of the distribution func-

tion as the beam is slowed.

The third area also analyzes a Guassian laser

interacting with an atomic beam. In this case the laser is

used to sense the position of a neutral beam. The laser

is directed towards the neutral beam from the side. The

atoms will be resonant with the laser for only a small angle

of deflection from the normal. The effect of the laser

on the emittance, and hence divergence, of the neutral

beam would be of intrest to accelerator designers. Cooks

quasiclassical equation would have to be solved since the

interaction time is very short.
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Appendix, The FPLK Program

The FPLK program is used to solve the difference .V

equation form of the Fokker-Planck equation. The program

is developed to allow maximum flexibility in terms on

analyzing different problems. This is accomplished using

a large initial data input section. The program is based

on a one dimensional analysis described in detail in

Section III. The program is written in ANSI standard

Fortran 77.

The input data section requires that the operator

of the program input 21 values that describe the problem

to be analyzed. All inputed values are in the M4KS system

of units. Figure 17 shows a typical set of input values

which were used to analyze the 480 niz sweep discussed in

the Analysis section. Included in figure 17 are lettered

captions on the input values, and a key that gives a description

of the value and its units.

Once the input data section is mastered, almost any

problem can be analyzed using the program. Stability

and convergence criteria limit the step sizes for a and y.

The rate of detuning must conform to equation 58.

The CPU time required to run the program becomes

excessive as &L and u become small. This is illustrated

in table III, which gives run times for various cases.

To improve execution speed, several modifications were made

to the program. The listing given in the end of this
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appendix is the modified form of the program. The changes

amount to removing all constants which are inside the time

loop in the program and calculating them outside the time

loop. This saves amny calculations and speeds the program

up by 20%. The program listed has been run for several

different cases discussed in the thesis and yields the

same answers.

Figure 18 is an example of the output format of the

program. The velocity is printed along with the value of

the distribution function and the force at that velocity.

This is accomplished for all velocities for one time step.

The computer then prints the number TOTNUJM (the area under

* the distribution function), and then starts the calculations

for the next time increment. Only six values of time are

printed in the output file since it becomes quite large.

The file wrtdatl is used to take values from the program

for these six times and input them into a graphics package.

This package produces figures similar to those used in this

thesis. The values in wrtdatl are not labled as the values "..

of outputx are. The first column in wrtdatl is the velocity.

The second column is the value of the distribution function

at that velocity. The third is the force at that velocity

and the fourth is the value of the time increment.

The size of the files wrtdatl and outputx can become

quite large for values of small velocity step size. For

.*.*. a velocity step size of .325 m/sec, the outputx file is

96

*, . *,% ° .o'/ , . . •* -.. . . .. . . .. . •. . .* - .. .. o .* -. . . . °•. . -. . . . . .



- ... .-- .. - .. - 4u-

N. N (.1 (.-4 C4 N N (. 4 N -4 N li N N ~ N C-1 N -41 N 1 C-4 -.4 N N C- r-.1 C.*4 (.41.4 N. &.1N

00 0s ir .- . -q, M '0 r'n In -4 -4 N qr 0 o 4 -o o o r. N i Nm N 0 0,Ii 02 m0 o 0 '-4 in
hi F.* n2 o. -4 0 a) nA c.4 w2 T o- N N T N 0'- 06-4 -e- N pn 0 T 0 rj .4 6- 0 N- m~ at
U') 0 T40- V, -o "C 0 "1 N' 0, C, IC4 0 1, al 0. .-4 0 -00 -1, N' N N 0 C) 02 X2 V, M2

co a 0~ 0 m 'iIn 0 U 4 ' N N D 0' 0 0 fr N 14) 1W V- 0 0n -0 N N c
0000 000 000 000 000 000 ,4- 4"- 4- 4 4- 14- L

l i ft Il i 1 I ll 1 91 1 i ll III l it I I l 1 99 C4.
it9 9 1 I it 1 I9 99 It i l I! If H 9 9. it I 1! II11 !! I If It II i if I 1 9 If I 9 ff 9, if

0000 000 0020000 0000000002000 000 000 00 U

000000000000000000000000000000000 L.
0000000000 00000000000000000000000

5*0000000000000000000000

0000 000 000 000 000 000 000 000 000 000 00 4

r 0 00 00 0 0 000 0 0 0000 0 00 0 000 0 00 00 0 00 0 0
0000 000 0 000 00 0 0000 000 0000 0 0000000000000000000000000000000000

0000 000 000 000 000 000 000 000 000 000 00

LLU L-L U.. LL U- .L LI jL U L. .U- U . . .- I L I* L LU'SU.U .

0000 000 000 000 000 000 000000 000 000 00

t0000000000000000000000000000000000
1000000000000000000000000000000000
40 IAb' 0 U1 0 li" 0 W) 0 V) 0 li"2 0 47) 0 4") 0 47) 0 0A 0 Vn 0 lin 0 0n 0 U") 0 hi 0 0n 0 E
020 N 11NONINON nN0 O N O 4NNCO~NO NOnNONOaiNO 0

Os0 0- 0. D. * 0 0 () N -N -' . 0- D. C- 01 0. C- a- 0i 0. 0N 0-4 014 0 00 0 w ' 0' 2 0
CP-S (.1 4 -4 4 V 4 4 .-. 4- -4 1- 4 4 - .- 4 .. 4 14 -4 -1-4 -1 -4 -4 .4 -4 -4 q - 4 -

Os.9~I. 1 11 II I991 I99 I9999I9II99999

41 19 99 99 11 99 11 19 99 11 11 11 19 11 it 11 m9 II 19 5 9 99 IfI f if i f it i f If i t I t If I[ 9

.4 ~ .4.4.4.4.4.4.4.4 P44 .4. . .4-.........

.41.

97



two megabytes. The wrtdatl file is 30% smaller for this

case. This assumes that all the values calculated are written

into the file. The use of the variable DFS in the input

data allows only every Ith value of the velocity to be

printed into the outputx and wrtdatl files. Here I is the

value assigned to the variable DFS. This can substantially

reduce the size of the file. However, this will rule

out being able to find the FWHI of the peak of the distribution

function as it slows down. This is because the FIiM4 becomes

very small and printing every Ith value of velocity will

skip over the entire peak. If the Frit-r is not desired, then

the value for DFS can be set to allow a point every 20 m/sec

to be printed and decent graphs will be produced.
06- L

The graphics package used to create the figures is

called S (Ref 27). The values in wrtdatl are read into a

matrix in the S library. They are split into four vectors

called force,df (value of the distribution function), vec

(value of the velocity), and timex (value of the time increment

the calculation is performed for). The figures generated

for this thesis are plots of df versus vec. Thus, this is

a graph of the distribution function for time J as a function

of velocity. Figure 19 shows the program used to plot the

distribution function. The plotter used is a HP 7220A

plotter. It can be used interactively with the S package.
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" The program in figure 19 can be executed from the

shell of the Unix system. Unix is the operating system for

the Vax computer. 'he execution statement is,

* S BATCH odata pltdat

Here odata is the name of the program in figure 19 and pltdat

is the name of a file that results and error messages will

appear in when the program is executed. Iote that S is a

case sensitive language, and that the command S BATCH must

be in capital letters. The ease of creating graphics programs

in S, and the ability to execute them while in the Unix shell,

outweighs the slow input/output times associated with the

two software designs. The author found the combination of

S and Unix to be a powerful one.

The program that plots the graphics has to be executed

while in the S library. To enter S, type S while in

the Unix system. To exit S type q . This command

will automatically save all files created while in S and

return the user to the Unix shell. An on line documentation

for S is available by typing help while in the S library.

A complete description of the plotting routines is given in

the manual for the S package (Ref 27 pg 2-16).
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C THIS PROGRAM CALCULATES THE EFFECT OF A LASER ON AN ATOMIC
C BEAMo IT IS A DIFFRENCE EQUATION OF THE FOKKER PLANCK EQUATION
C DEVELOPED FOR THIS CASE BY M G MCHARG

REAL FORCE(20000),DFTN(20000)PDELDFN(200000),MASS
REAL DELTIM,DELV,TOTNUMOMEGAC,VEL(20000),ALPHA,TEMP,A
REAL VELO,VELMIN,PRENUMTIME,WK,R,VELCTR(20000),FPRIME(20000)
REAL DIFUSN(2-0000) ,DEFCTV(20000),F'FTN(20000) ,EPRIME(20000)
INTEGER DFS,MT,N,Q,JCNTR

C THIS SECTION OPENS THE FILES wrtdatl AND saive, wrtdatl IS THE FILE FOP
C DATA TO BE INPUTED INTO THE GRAPHICS. save IS A FILE THAT SAVES THE
C VALUE FOR JCNTR AND THE VECTORS VELCTR DFTN FORCE AND DIFUSN.

OPEN(10,FILE='wrtdatl')
REWIND 10
OPEN(ll,FILE='save')
REWIND 11

PRINT*,'VARIABLE LIST- j
PRINT$,'FORCE: 2400 ELEMENT VECTOR. FORCE DISTRIBUTION FTN'
PRINT*,'DFTNI 2400 ELEMENT VECTOR. DISTRIBUTION FTN TO BE'
PRINT*,' USED IN BOLTZMAN EQTN."
PRINT*1 MASS: PARTICLE MASS,KILOGRAMS.
PRINT*,'DELTIM: INCREMENT OF TIME IN DIFFERENCING EQTN.-
PRINT*,'DELV: CHANGE IN VELOCITY IN DIFFERENCING EQTN."
PRINT*v"TOTNUM: THE AREA UNDER THE DFTN CURVE.'
PRINT*I'VELCTR: VELOCITY
PRINT*,'ALPHA: WIDTH OF DFTN IN METERS PER SECOND-
PRINT*,'TEMPOTEMPERATURE IN DEGREES KELVIN OF OVEN PRODUCING THE' L.".
PRINT*r" ATOMS"
PRINT*,'A: SPONTANEOUS EMMISSION COEFFICIENT, INVERSE SECONDS'
PRINT$,"OMEGAC: CAPITAL OMEGA, RABI FREQUENCY,INVERSE SECONDS-
PRINT*,'VELMIN: MINIMUM VELOCITY IN DFTN.'
PRINT*,"VELO: THE INITIAL VELOCITY WHICH FORCE AFFECTS "
PRINT*v"TIME: A CONSTANT USED TO TELL INTERACTION TIME'
PRINT*,-DFS: SPACING INTEGER FOR OUTPUT PRINTING '

PRINT*, PRENUM: THE PRELIMINARY TOTNUM"
PRINT*v*MT: TOTAL NUMBER OF TIME ITERATIONS THE PROGRAM RUNS'
PRINT*,'R:RATE LASER FREQ IS SWEPT, IN INVERSE SECONDS'
FRINT*,- SQUARED*
PRINT,-DETUNF: THE DUTUNING FREQUENCY BETWEEN LASER AND'
PRINT$,' THE ABSORBING LINE OF THE MEDIA'
PRINT*,"WK: WAVENUMBER. 2*PI/LAMBDA IN INVERSE METERS'
PRINT*v'LAMBDA: THE WAVELENGTH OF THE LASER IN METERS'
PRINT*v'DELFTN: THE CHANGE IN THE DFTN'
PRINT*v'N: THE END NUMBER IN DO LOOPS''

' - PRINT*,'KBOLT: BOLTSMAN CONSTANT IN JOULES PER DEGREE KELVIN'
PRINT*,'DIFUSN:20000 ELEMENT VECTOR,DIFUSION COEFFICIENT
PRINT*, DEFCTV:20000 ELEMENT VECTOR,DELEFECTIVE '
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PRINT*,'U THE FREQUENCY OF LASER IN INVERSE SECONDS(FRADIAN)a
PRINT*,'SPDILIT: THE SPEED OF LIGHT IN M(SO
PRINT*,DELTIM: TIME STEP SIZE IN SECONDS'
PRINT*,'DELV: VELOCITY STEP SIZE IN METERS PER SECOND'
PRINTWO'uIT: A COUNTER SET EQUAL TO 0,1,2 FOR START,END,RESTART'
PRINT*, * RESPECTIVELY'
PRINT*,'JCNTR: VALUE FOR THE TIME DO LOOP. SET IT EQUAL TO 1 IFO a
PRINT*,' FIRST STARTYSET EQUAL TO LAST VALUE OF J IF PESTART'
PRINT*,'E4,Gvt,E#F: VALUES OF TIME COUNTER AT WHICH THE PROGRAM'
F'RINT*,' PRINTS 'THE OUTPUT VALUES'
PRINT*,'H4AR: FLANCKS CONTANT DIVIDED BY .-*PI,JOULES-SECONEIS'
PRINT*,*C:o MOMENTUM OF PHOTONS IN KILOGRAM-METERS FER SECOND'
PRINT*,'Q:COUNTER OF THE TIME INCREMENTS. WHEN IT REACHES 100
PRINT*,- VALUE FOR JCNTR AND THE VECTORS VELCTR,r'FTNFORCE'
PRINTW, AND DIFUSN ARE SAVED IN- THE SAVE FILE'

PRINT*,'

* C THIS SECTION READS IN INITIAL VALUES
PRINT*, 'INPUT MASS,DELTIM,DiELV,VELMIN,OMEGAC,TEMP,WK,MT,R,N*
READ*, MASS,DELTIM,rELV,VELMIN,OMEGAC,TEMP,WK,MTr,R,N
PRINT*, 'MASS=' ,MASS, 'DELTIM=' ,DELTIM, 'DELV=' ,DELV
PRINT*, 'VELMIN=' ,VELMIN, 'OMEGAC=' ,OMEGAC, 'TEMP= , TEMP .

PRINT*, 'WK=' ,WK, 'MT= ,MT, 'R=' ,R, 'N' ,N L
PRINT*,*INPUT QUIT AND JCNTR'
READ*, QUIT,JCNTR
PRINT*,'QUIT=',QUIT,'JCNTR=,PJCNTR
PRINT*,'INPUT VELO','INPUT DFS','INPUT A'
READ*, VELO,DFSA,W
PRINT*, 'YELO=' ,VELO, 'DiFS=' ,DFS, 'A=' A, W=*,W
READ*, 8,G,D,E,F
PRINT*,'B'BG=,G'D'dE= E F',

* C QUIT IS THE START/QUIT/RESTART OPTION. IF QUIT=l THEN PROGRAM ENDS
C IF QUIT=2 THEN PROGRAM RESTARTSPIF flUIT=0 THEN PROGRAM STARTS FOR

*C FIRST TIME,
IF (QUIT *EQ, 1) THEN

0O TO 92
END IF
IF (QUIT .ED. 2) THEN
READ(11,*)JCNTR
DO 40 I=1,N

READ(1l,*)VELCTR(I),DFTN(I),FORCE(l),DIFUSN(I)
40 CONTINUE

REWIND 11
GO TO 82
END IF

*C THIS DO LUOP INITIALIZES THE VELOCITY DISTRIBUTION FTN
BOLTK=1 .38E-23
ALPHA=SORT(2 .*TEMP*EIOLTK/MASS)
DO 50 11I,N
VEL( I )DELY*( I-i )-VELMIN
IF(VEL(I)*LT.0) THEN

* VEL(I)=0

END IF
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C THE VELCTR SERVES TO PRINT THE REAL VELOCITY AXIS
VELCTR( I)=E'ELV*( I-i) -VELMIN
DEFCTV( I)=-(WK*VELO)+WK*VELCTR( I)
EFTN(I)=((VEL(I)**3)/(ALPHA**4))*EXP(-(VEL(I)**2)/(ALPHA**2))

~\50 CONTINUE
PRINT*r3

C=UK*1 ,0546E-34
HBAR=1 .054E-34
SPDLIT=2 .998E8

* C THE DO 70 LOOP CALCULATES THE TOTAL NUMBER TOTNUM

PRINT*,'
* C THE FOLLOWING ARE CONSTANTS USED IN THE CALCULATIONS OF FORCE
* C AND DIFUSN.

W=SP DL IT*WK
t'IFCOI =HEAR*W*OMEGAC/MASS
DIFCO=(DIFCOl/SPDLIT)*(DIFCOl/SPDLIT)*(A/5.)
DIFC1=A*A+2.*DMEGAC*OMEGAC
DIFC2=-A*A+2 **OMEGAC*OMEGAC
DIFC3=2**OMEGAC*OMEGAC*A*HBAR
DIFC4=OMEGAC*OMEGAC*WI(*WK*HBAR/2.
DELDCI=DELTIM/E'ELV/DELV
CINT1=(DELV-(DELTIM*R/WK))
DELDC2=(-t'ELTIM/(MASS*t'ELV))

* C THE DO0 86 LOOP MAKES THE DIFFUSION COEFFICIENT SO THE DELDFN
C CAN BE COMPUTED.

(j DO 86 I=1,NL
DIFUSN(I)=(DIFC4*(DIFC3*(l 12.*DEFCTV( I)+DIFC2l)+A*(4.*DEFCTV(I)*

C DEFCTV(I)+A*A)*H4AR*(4.*E'EFCTV(I)*DEFCTV( I)+A*A) )/(MASS*(4*
C DEFCTV(I)*EEFCTVI)+DIFCI))/(MASS*(4.*DEFCTV(I)*t'EFCTV(I)+
C DIFC1))/(4.*DEFCTV(I)*DEFCTV(I)+DIFCI) )+DIFCO/(4.*DEFCTV(I)*
C DEFCTV( I)+DIFC1)

86 CONTINUE
* C THE DO 85 LOOP MAKES THE FORCE COEFFICIENTS SO THE DO 90 LOOP
* C CAN STEP OUT IN TIME,

DO 85 I=IN
FORCE (I )=(A*OMEGAC*C*OMEGAC ) /(4, *DEFCTV CI )*DEFCTV(CI )+A*A+

C 2*OMEGAC*OMEGAC)
85 CONTINUEL

* C THE DO 87 LOOP PRINTS THE INITIAL VALUES OF EVERYTHING
PRINT*, TIME=01
DO 87 I=1,N,DIFS
PFTN(I)=DFTN( I)*100.
PRINT*,IVEL=',VELCTR(I),ODFTN=8,PFTN(I),OFORCE~mFORCE(I)
WRITE(l0,990)VELCTR(I) ,PFTN(I),FORCE(I),J

990 FORMAT(5X,t12.5,2X,E12.5,2XEl2,5,2X,15)
87 CONTINUE

TOTNUM=0
00 70 I=1,N

PRENUM-0
PRENUM=DELV*DFTN (I)
TOTNUM=TOTNUM+PRENUM

70 CONTINUE
PRINTs, TOTNUM=I,TOTNUM
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PRINT*, * ,

PRINT*,m
0=0

C THIS IS THE TIME LOOP, IT CALCULATES VALUES FOR THE JTH
C ITERATION USING VALUES FROM THE J-lTH ITERATION
82 DO 90 J=JCNTR,MT

TIME=J*DELT IN
C THE DO 91 LOOP INTERPOLATES TO MOVE THE FORCE AND rIFFUSAION
C COEFFICIENTS DOWN THE VELOCITY AXIS. THIS KEEPS THE PROGRAM
C FROM RECALCULATING THE COEFFICIENTS EACH TIME.4.

DO 91 I=1,N-1
DPRIME(I)=-(CINTI*(DIFUSN(I+1)-DIFUSN(I) )/DELV)+DIFUSN(I+1)

FPRIME(I)=-(CINTI*(FORCE(I+1)-FORCE(I))/DELV)fFORCE(I+l)
91 CONTINUE

C COEFFICIENTS DOWN THE VELOCITY AXIS.
DO 100 I=1,N
DIFUSN( I =DPRIME (I)
FORCE( I)=FPRIME( I)

100 CONTINUE

C THE DO 80 LOOP CHANGES THE DISTRIBUTION FTN FOR VELOCITY
DO 80 1=2,N-1

* DELDFN(I)=EIELrIC2*(FORCE(I+1)$r'FTN(1+1)
, C --FORCE(I)*EIFTN(I) )+(DELDC1*(tIFUSN(I+)*DFTN(I+1)-2.*

C DIFUSN(I)*DFTN(I)+DIFUSN(1-1)*DFTN(I-1)))
so8 CONTINUE

* C THE DO 81 LOOP CHANGES THE DISTRIBUTION FUNCTION FOR VELOCITY
~ D rio eI 1,N

DFTN( I )DFTN(I1)+DELDFN( I)
e1 CONTINUE

* C THE DO 75 LOOP PRINTS THE VELOCITY,DFTN,FORCE.
IF(J.EQ.E4OR.J.EO.G.OR.J.EO.D.OR.J.EQ.E.OR.J.EO.F)THEN
PRINT*P*TIME=*,TIME

DO 75 11,vNpDFS
PFTN( I)=DFTN( I)*100 1.
PRINT$,*VELOCITY=,vVELCTR(I)EIDFTN-',PFTN(I),IFORCE=,PFORCECI)
WRITE(10,1000)VELCTrR(I),PFTN(I),FORCE(I),J

1000 FORMAT(5X,E12.5,2XE12.5,2XEl2.5,2X,I5)
75 CONTINUE

PRINT*, TOTNUM=ITOTNUM
END IF 2

* C THE DO 76 LOOP RECALCULATES TOTNUM
TOTNUM=0

DO 76 L1,rN
PRENUM=0
PRENUM=t'ELV*IIFTN (L)
TOTNUM= TOT NUN +PRE NUN

* 76 CONTINUE
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JCNTR=J
*C THE 0 COUNTER PRINTS EVERY 100 TIME AND TOTNUM

IF(G*EG*100)THEN
0=0
WRITE(11 ,*)JCNTR
DO 77 11,pN
WRITE(11,*)YELCTR(I),DFTN(I),FORCE(I),IIFUSN(I) -

*77 CONTINUE
REWIND 11

PRINT*, 3TIME=',TIME
PRINTW,
PRINT*iOTOTNIJM=3 ,TOTNUM

PRINT*,o
PRINT*v, - .
PRINTW ,
END IF

90 CONTINUE
92 END

%5%
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